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In the paper [1] ce-tain methods of solut.on were considered (*) for nonlin-
ear equations of the form (1.3)*

Az =0 Az = grad f (2)) (1)

where f(x) is some functional given in a real Hilbert space x . For the
solution of Equation (1), in particular, use was made of the process (2.2)*

20 = 2 gp-14,™ (@ = const > 0) @

where B 1s & certain positive-definite operator satisfying condition (2.4)*

Here we wlll consider the rapidity of convergence of process (2), and also
that class of functions for which thls process converges when 4 and 5 are
differential operators. We will begin with the second question.

We willl assume that in the appropriate space the differential operator 4
has a derivative 4’(x) whose form will be described in the following. Let
the coefficlents of the differential operator 4’(x) be bounded functions
and the order of its highest derivative be 2n .

As the Hilbert space F we willl take the space Wz(") of functions whose
nth derivatives are [, functions,

Let us consider the quadratic functional F (z, k) = (4’ (x) h, h). 1f the
contour integrals for the integration by parts vanish, F(x,n) contains deri-
vatives of function » of order no higher than the nth. Hence, under the
conditions adopted, F(x,n) will be a bounded functional in W,(‘n).‘ If, how=-
ever, 1t 1s also contlnuous with respect to x , the operator A4’ \x) Wwill be
symmetric 52] . From the boundedness of the functional r(x,n) , 1t follows
that 4’(x) 1s also bounded and is therefore the derivative of a Fréchet
operator 4 . Hence, the latter is also continuous in W, [3]. As can
be scen from (1.2)*, the function z(x) is also continuous” in (™.

Let 5 Dbe a differentlal operator of the same order as A'(x) . We will

*) For brevity, the asterisk will denote the number given to the correspond-
ing formula in [1].
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choose its coefricients so that, besides condition (2.4)*, they also satilsfy
the following conditions:

mih|< (BB, | Bhy k)| < M by ||kl (hy by, by € Hy C W™ (3)

The norm in (3) 1s taken in W,™ Then, from (2.6)* we obtain

. 1 1 1 1
Fa® — 2D -@RY, 1) < S 1 ) — £ )] (b=5 =7 x>0)
whence it follows that
1
(v+p) 0y n(V) - o)y __ (v+p)
| z ”W2(n) <mp, lf &) — f (™)
Since {f (")} 1s a convergent)sequence, {z'"} converges 1in the mean,

i.e. to a limit element 2 & W,
Similar to [4], a function x* that satisfles the condition

(Az*, b) = 0 @)

for arbltrary h € H; will be called a generalized solution of equation (1).
The left-hand side of (4) is regarded as the first variation of the func-
tional s(x).
Here also we willl assume that the contour integral vanishes. Then, (2) can
be written in the form
Br, hy=—a(4z", k) (h € Hy) (3

Since the sequence {h"’} tends to zero [1] in W,™, it follows from (3)
that the left-hand slde of Equation (5) tends to zero as v—o . ThF;l keep-
ing the'con}:jjnuity of operator 4 1n mind, we find from (5) that 2\ — 2’
implies (42", B} — (Ax’, h) = 0, 1.e. x’= x* will be the generalized solution

of Equation (1}.

Now let f(x) be given in space x . We wlll prove that if the operator
B in y satlsfles condition (3) and moreover the following condition is

fulfilled "

Oy ARPSW (2, ) S KM L2 (z, h € H) (6)
where the constants y, ¥ > O (y < ¥), then process (2) converges with the
rapidity of a geometric progression wilth common ratio |q| < 1 . The optimum

value of the coefficient o for which the best convergence is obtained, 1s
a certain value a > 1/K .

From (2.5)* and (2), remembering that (B~ lz, 2) > M1|z|?, we obtain
1@ — £ @) > et —Yy0k) (B 4z, Az) > eM (1 — Yy aK) |42V (7)
On the other hand
f@® — [ @) = —(dz, & — &%) 4 YW (2, 5 — 2*)
@) —f (=% YW (z%, x — x*)
Hence we obtain
Y, W (z*, z — 2*) = (A2, v — %) — YW (2, z — a*) < (Az, v — %)

and therefore
f (@) — [ (z*) < Az, z — z%) (8

We will represent condition (6) as
viREP <A @4 k) — Az, b) S KM AP
Then (Az, h) = (Az — Az*, h) > v (h, k) and from the inequality {4z, k)% <
< (Az, Az) (h, ) it follows that |\Ax, h)| <<y 1|Adz 2. Substituting the lat-
ter into (8), we obtain

f@ —f@*)<y?tldzp (9
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We will introduce [5] the notation — _ *). Then, f
and (9) it follows that ¢ (@) = f(x) — f (2% e rom (7)

¢ @) — 9 (@) > yMTa (1 — Y, k) 9 (zV)

- o N s e 2 (VD) R [ P e
whence it follows that ¢@ =" >0 "), uhere g=1—vyMta(l — ¥/, ak).
If 0< g <axxe <2 /K, then g¢g< 1, and we obtain

f @™ — f (@ < ¢'lf &) — § @¥)] (10)

1.e. {f (@) tends to f(z*) with the rapldity of a geometric progression.
The constant ¢ attains its smallest value, ¢ = 1 — y/2¥k , when o = 1/k.
The constant & 1is usually set too large, and therefore it 1s necessary to
take @ somewhat larger than 1/K .

From (2.6)* it follows that

-1

v v l 1 o
BN < (G = - K) U@ — 1<+~ k) geo)

2
or
-1
W L (L _ Ol = )
7 H\m S T K) 9@ =re @)
Then
n+p-1 n+p-1
”x(ﬂﬂi)_z(n) < Z Hh(v) 1< re (x(o)) Z g’
v=n v=n
which, since g < 1, leads to
-1 n
R B A R I Ay
eV =S (- g K)o )

Thus, the convergence of {z/”} 1s just as fast as that of {f (z("))}.

As we noted in [1], process (2) generalizes the modified Newton's method.
In general, the latter method converges only when the initial approximation
z{® is sufficiently close to x* [3], On the other hand, in the present
case of potential operators, process (2) converges to the solution of Equa~
tion (1) independently of the initial approximation.

In (1] there is presented an investigation of the convergence of the
Galerkin method, which was then used to prove the convergence of the method
of partial approximations. PFora proof of the first method certain rather
rigid assumptions were made, which proved to be superfluous. However, the
convergence of the Galerkin method in the case of equations with a potential
operator will be a consequence of the convergence of the Ritz method treated
in [6]. Hence, this question has not been dealt with here.
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