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In the paper [l] ce stain methods of solutron were considered (*) for nonlin- 
ear equations of the form (1.3)* 

Ax=0 (AZ = grad f (CC)) (1) 

where Y(X) Is some functional given In a real Hllbert space H . For the 
solution of Equation (l), In particular, use was made of the process (2,2)* 

x(“+l) = ,b) _ aB-lAz(Y) (a = const> 0) (2) 

where B Is a certain positive-definite operator satisfying condition (2.4): 

Here we will consider the rapidity of convergence of process (2), and also 
that class of functions for wh!ch this process converges when A and B are 
differential operators. We will begin with the second qilestlon, 

We will assume that In the appropriate space the differential operator A 
has a derivative A'(x) whose form will be described In the following. Let 
the coefficients of the differential operator A’(X) be bounded functions 
and the order of Its highest derivative be & . 

As the Hllbert space fl we will take the space Watn) of functions whose 
nth derivatives are Lo functions. 

Let us consider the quadratic functional F (x,h) = (A’ (x) h, h). If the 
contour Integrals for the lntegratlbn by parts vanish, F(x,h) contains derl- 
vatlves of function h of order no higher than the nth. Hence under the 
conditions adopted, &,h) will be a bounded functional In Wrn) If, how- 
ever, it Is also continuous with respect to x , the operator 'A"{x) will be 

From the boundedness of the functional ,&,h) it follows 
Is also bounded and Is therefore the derivative of i Frdchet 

operator A . Hence, the latter Is also continuous In Wz("' [3]. As can 
be seen from (1.2)*, the funct.lon y(r) Is also continuous In W,@). 

Let B be a differential operator of the same order RS A’(x) . We will 

") For brevity, the asterisk will denote the number given to the correspond- 
ing formula In Cl]. 
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choose its coefficients so that, besides condition (2.4)*, they also satisfy 
the following conditions: 

mIIhIl<(m 4, I WI, kJ I 6 M II 4 II II h, II (h, h,, h, E H, c Wz’“‘) (3) 

The norm in (3) Is taken 

II,,(") - z ("+I) 11 <-&Q"), h(V)) 

whence It follows that 

In WzCn) Then, from (2.6)* we obtain 

< A- [j (2'"') - j (r'"+")] 
mP 

-$>O) 

11 x(“+P) -J”) I&p) Grn+ [f (2’“‘) - j (x'"+p')l 

Since (j(P)) Is a converp;ent sequence, 
i.e. to a limit element x'E Watn) 

{cI?} converges In the mean, 

Similar to C43, a function x * that satisfies the condition 

(AZ*, h) = 0 (4) 
for arbitrary hEH, will be called a generalized solution of equation (1). 
The left-hand side of (4) Is regarded as the first variation of the func- 
tional Y(X). 

Here also we will assume that the contour integral vanishes. Then,(2) can 
be written in the form 

(B/J"), h)=-u(Ar("), h) (h E HI) (5) 

Since the sequence {h("!} tends to zero [1] In w,'"), It follows from (3) 
that the left-hand side of Equation (5) tends to zero as v-m . l’hfiy. ke,ep- 
~L~l;;;,~;o~~+n~~ty_ ;;;p"hfazg, A In m;nd, we find from (5) that x 

of Equation (iJ. 
I.e. 5 = x* will be the generalized .&i&on 

Now let I(X) be given In space x . We will prove that If the operator 
B In H satisfies condition (3) and moreover the following condition is 
fulfilled 

0 <Y II h 11' d W (2, h) d KM II h IF @, h E H) (6) 

where r;he constants Y, K> 0 (Y < Mw), then process (2) converges with the 
rapidity of a geometric progression with common ratio IQI < 1 * The optimum 
value of the coefficient 
a certain value a > l/X . 

a for which the best convergence is obtained, Is 

From (2.5)" and (2), remembering that (B-1x,x) > M-111xl12, we obtain 

j (x(")) - j (x("+l)) > a (i - '/a UK) (B-l AZ("), AX(")) >, ccM+ (1 - Va ccK) llAx(“)((2 (7) 

On the other hand 

f (z*) - j (5) = -(Ax, x - 2') 9 VzW (XVX - x*) 

j (5) - j (I*) = '/zW (r*, z - x*) 

Hence we obtain 

l/&,W (x*, 2 - x+) = (Ax, x - 5*) - llpW (x, x - x*.) < (AZ, x - x*) 

and therefore 
j (x) - j (I*) d (Ax, x - r*) 

We will represent condition (6) as 

y II h II2 4 (A (z + h) - AZ, h) d KM U h I$ 

(8) 

Then (Ax, h) = (Ax -AZ*, II) > Y (h, h) and from the inequality (AZ, h)2 < 
< (Ax,Ax) (h,h) it follows that 1\_4x,h)l <y-lllAxIP. Substituting the lat- 
ter into (8), we obtain 

f (2) - j (x*) f Y-l llAx Ip (9) 
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and 
We will introduce 153 the notation T(I) = f(z) - f(z*). Then, from (7) 
(9) It follows that 

rp (~(9 - 9 ( J’+l)) > yhF1 a (1 - liz aK) cp (d”)) 

whence It follows that Q'p (x"') 29 (Z(y+l))~ where q = 1 - ykf-‘U(l - ‘i, aK). 
If 0<e16a<ee,<2/K, then q<4, and we obtain 

f (x’“‘) - f (I*) < q”[f (do)) - f W)I (10) 
I.e. {f(z’“‘) tends to f(z*) with the rapidity of a geometric progression. 
The constant q attains its smallest value, 
The constant K Is usually set too large, 

4 = 1 - y/WK , when a = l/K. 

take a somewhat larger than l/K . 
and therefore It is necessary to 

From (2.6)+ It follows that 

(B/&Y), h("))Q [$ - + Kj-‘lf (I(“)) - f (.d”+“)] g ($ - -& K)-1 cp (&‘) 

or 

11 IL(“) 11 < 1 
i 

I 
-1 

-- 
m a -gKj ‘p (29’) = rql (27’“‘) 

which, since p<l, leads to 

I/z@) -Zr*jl& -- 
( 

I 
lk. 

m a 2 

Thus, the convergence of {z")} Is just as fast as that of {f(~("))>. 

As we noted In [l], process (2) generalizes the modified Newton's method. 
In general, the latter method converges only when the lnltlal approximation 
z(") Is sufflclently close to X* r31 * On the other hand, J-n the present 
case of potential operators, process (2) converges to the solution of Equa- 
tion (1) Independently of the initial approximation. 

In [lj there Is presented an Investigation of the convergence of the 
Galerkln method, which was then used to prove the convergence of the method 
of partial approximations. Foraproof of the first method certain rather 
rigid assumptions were made , which proved to be superfluous. However, the 
convergence of the Galerkln method in the case of equatlons with a potential 
operator will be a consequence of the convergence of the Ritz method treated 
in [61. Hence, this question has not been dealt with here. 
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